Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Rev Med Virol ; 34(3): e2532, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38549138

RESUMO

Cytomegalovirus (CMV) belongs to the Herpesviridae family and is also known as human herpesvirus type 5. It is a common virus that usually doesn't cause any symptoms in healthy individuals. However, once infected, the virus remains in the host's body for life and can reactivate when the host's immune system weakens. This virus has been linked to several neurological disorders, including Alzheimer's disease, Parkinson's disease, Autism spectrum disorder, Huntington's disease (HD), ataxia, Bell's palsy (BP), and brain tumours, which can cause a wide range of symptoms and challenges for those affected. CMV may influence inflammation, contribute to brain tissue damage, and elevate the risk of moderate-to-severe dementia. Multiple studies suggest a potential association between CMV and ataxia in various conditions, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, acute cerebellitis, etc. On the other hand, the evidence regarding CMV involvement in BP is conflicting, and also early indications of a link between CMV and HD were challenged by subsequent research disproving CMV's presence. This systematic review aims to comprehensively investigate any link between the pathogenesis of CMV and its potential role in neurological disorders and follows the preferred reporting items for systematic review and meta-analysis checklist. Despite significant research into the potential links between CMV infection and various neurological disorders, the direct cause-effect relationship is not fully understood and several gaps in knowledge persist. Therefore, continued research is necessary to gain a better understanding of the role of CMV in neurological disorders and potential treatment avenues.


Assuntos
Transtorno do Espectro Autista , Infecções por Citomegalovirus , Doenças do Sistema Nervoso , Humanos , Transtorno do Espectro Autista/complicações , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/fisiologia , Doenças do Sistema Nervoso/etiologia , Ataxia/complicações
2.
Artigo em Inglês | MEDLINE | ID: mdl-38441021

RESUMO

Natural products have historically driven pharmaceutical discovery, but their reliance has diminished with synthetic drugs. Approximately 35% of medicines originate from natural products. Scopoletin, a natural coumarin compound found in herbs, exhibits antioxidant, hepatoprotective, antiviral, and antimicrobial properties through diverse intracellular signaling mechanisms. Furthermore, it also enhances the activity of antioxidants. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes viral pneumonia through cytokine storms and systemic inflammation. Cellular autophagy pathways play a role in coronavirus replication and inflammation. The Silent Information Regulator 1 (SIRT1) pathway, linked to autophagy, protects cells via FOXO3, inhibits apoptosis, and modulates SIRT1 in type-II epithelial cells. SIRT1 activation by adenosine monophosphate-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) enhances the autophagy cascade. This pathway holds therapeutic potential for alveolar and pulmonary diseases and is crucial in lung inflammation. Angiotensin-converting enzyme 2 (ACE-2) activation, inhibited by reduced expression, prevents COVID-19 virus entry into type-II epithelial cells. The coronavirus disease 2019 (COVID-19) virus binds ACE-2 to enter into the host cells, and XBB.1.5 COVID-19 displays high ACE-2-binding affinity. ACE-2 expression in pneumocytes is regulated by signal transducers and activators of transcription-3 (STAT3), which can increase COVID-19 virus replication. SIRT1 regulates STAT3, and the SIRT1/STAT3 pathway is involved in lung diseases. Therapeutic regulation of SIRT1 protects the lungs from inflammation caused by viral-mediated oxidative stress. Scopoletin, as a modulator of the SIRT1 cascade, can regulate autophagy and inhibit the entry and life cycle of XBB.1.5 COVID-19 in host cells.

3.
Curr Cardiol Rev ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192129

RESUMO

Heart failure (HF) is the fastest-growing cardiovascular condition worldwide. The immune system may play a role in the development of HF since this condition is associated with elevated pro-inflammatory cytokine levels. HF is a life-threatening disease, and there is an increasing demand for diagnostic biomarkers, prognostic factors, and therapeutic agents that can help treat it. Galectin-1 (Gal-1) is the prototype galectin of the lectin family. Multiple signal transduction pathways are regulated by Ras proteins, which act as a molecular switch in cells. Gal-1 regulates T and B cell activation, differentiation, and survival. Gal-1 has been linked to inflammation. Activated T cells produce Gal-1 through an autocrine apoptotic mechanism involving MEK1/ERK and p38 MAPK. In the cardiovascular system, atherosclerosis is facilitated by Gal-1. Heart disease, myocardial infarction, hypertension, and stroke can be caused by atherosclerotic plaque. HF and heart hypertrophy are caused by decreased cardiac L-type Ca2+ channel activity. Deregulation of Gal-1 and CaV1.2 in pathological cardiac hypertrophy suggests a possible target for anti-hypertrophic therapy. Rat hypertrophic cardiomyocytes express Gal-1 and CaV1.2 channels simultaneously. It has been reported that diastolic dysfunction (DD) is associated with elevated Gal-1 levels. The high Gal-1 level in subjects led to the lowest cumulative survival as a composite endpoint. Incidences of HF, DD, and serum Gal-1 levels correlated significantly. The ejection fraction was negatively correlated with Gal-1 and CRP concentrations. Based on two different approaches in mice and humans, Gal-1 was identified as a potential mediator of HF.

4.
Int J Antimicrob Agents ; 56(4): 106143, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32853672

RESUMO

As no specific pharmacological treatment has been validated for use in coronavirus disease 2019 (COVID-19), we aimed to assess the effectiveness of azithromycin (AZM) in these patients at a referral centre in Iran. An open-label, randomised controlled trial was conducted on patients with laboratory-confirmed COVID-19. A total of 55 patients in the control group receiving hydroxychloroquine (HCQ) and lopinavir/ritonavir (LPV/r) were compared with 56 patients in the case group who in addition to the same regimen also received AZM. Patients with prior cardiac disease were excluded from the study. Furthermore, patients from the case group were assessed for cardiac arrythmia risk based on the American College of Cardiology (ACC) risk assessment for use of AZM and HCQ. The main outcome measures were vital signs, SpO2 levels, duration of hospitalisation, need for and length of intensive care unit admission, mortality rate and results of 30-day follow-up after discharge. Initially, there was no significant difference between the general conditions and vital signs of the two groups. The SpO2 levels at discharge were significantly higher, the respiratory rate was lower and the duration of admission was shorter in the case group. There was no significant difference in the mortality rate between the two groups. Patients who received AZM in addition to HCQ and LPV/r had a better general condition. HCQ+AZM combination may be beneficial for individuals who are known to have a very low underlying risk for cardiac arrhythmia based on the ACC criteria.


Assuntos
Anti-Infecciosos/uso terapêutico , Azitromicina/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Hidroxicloroquina/uso terapêutico , Lopinavir/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Ritonavir/uso terapêutico , Adulto , Idoso , Betacoronavirus/patogenicidade , Proteína C-Reativa/metabolismo , COVID-19 , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Progressão da Doença , Combinação de Medicamentos , Feminino , Frequência Cardíaca/fisiologia , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Pandemias , Segurança do Paciente , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , Prognóstico , Testes de Função Respiratória , SARS-CoV-2 , Análise de Sobrevida , Linfócitos T/patologia , Linfócitos T/virologia , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA